
Digital Object Identifier (DOI) 10.1140/epjc/s2004-01592-0
Eur. Phys. J. C 33, 349–368 (2004) THE EUROPEAN

PHYSICAL JOURNAL C

Exclusive B → (K∗, ρ)γ decays
in general two-Higgs-doublet models

Zhenjun Xiao1,2,a, Ci Zhuang3

1 Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
2 CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, P. R. China
3 Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China

Received: 9 October 2003 / Revised version: 11 November 2003 /
Published online: 18 February 2004 – c© Springer-Verlag / Società Italiana di Fisica 2004

Abstract. By employing the QCD factorization approach, we calculated the next-to-leading order new
physics contributions to the branching ratios, CP asymmetries, isospin and U -spin symmetry breaking of
the exclusive decays B → V γ (V = K∗, ρ), induced by the charged Higgs penguins in general two-Higgs-
doublet models. Within the considered parameter space, we found that (a) the new physics corrections to
the observables are generally small in model I and model III-A, moderate in model II, but large in model
III-B; (b) from the well measured branching ratios and upper limits, a lower bound of MH > 200 GeV
in model II was obtained, while the allowed range of MH in model III-B is 226 ≤ MH ≤ 293 GeV; these
bounds are comparable with those from the inclusive B → Xsγ decay; (c) the NLO Wilson coefficient
C7(mb) in model III-B is positive and disfavored by the measured value of isospin symmetry breaking
∆exp

0− (K∗γ) = (3.9 ± 4.8)%, but it still cannot be excluded if we take the large errors into account; (d) the
CP asymmetry ACP (B → ργ) in model III-B has an opposite sign to the one in the standard model (SM),
which may be used as a good observable to distinguish the SM from model III-B; (e) the isospin symmetry
breaking ∆(ργ) is less than 10% in the region of γ = [40 ∼ 70]◦ preferred by the global fit result, but it can
be as large as 20 to 40% in the regions of γ ≤ 10◦ and γ ≥ 120◦. The SM and model III-B predictions for
∆(ργ) are opposite in sign for small or large values of the CKM angles; (f) the U -spin symmetry breaking
∆U(K∗, ρ) in the SM and the general two-Higgs-doublet models is generally small in size: ∼ 10−7.

1 Introduction

As is well known, the inclusive radiative decays B → Xqγ
with q = (d, s) and the corresponding exclusive decays B →
V γ (V = K∗, ρ) are very sensitive to the flavor structure
of the standard model (SM) and to the new physics models
beyond the SM and have been studied in great detail by
many authors [1–3].

For the inclusive B → Xsγ decay mode, the world
average of the branching ratio [4] is

B(B → Xsγ) = (3.34 ± 0.38) × 10−4 , (1)

which agrees perfectly with the SM theoretical prediction
at the next-to-leading order (NLO) [5–9] and puts per-
haps most stringent bounds on many new physics mod-
els [10–13] where new particles such as the charged Higgs
bosons may provide significant contributions through flavor
changing loops.

The exclusive decay B → K∗γ has a very clean ex-
perimental signal and a low background, which was first
observed by CLEO in 1992 [14], and measured recently by

a e-mail: xiaozhenjun@pine.njnu.edu.cn

BaBar and Belle with good precision [15, 16]: the world
averages of the CP -averaged branching ratios are [17]

B(B → K
∗0

γ) = (4.17 ± 0.23) × 10−5,

B(B → K∗−γ) = (4.18 ± 0.32) × 10−5 , (2)

and they have reached a statistical accuracy of better than
10%. The measurements of the Cabibbo suppressed B →
(ρ, ω)γ decays are difficult because the signal is about 20
times smaller, and the continuum background is about 3
times larger than the B → K∗γ decay mode. Consequently,
experiments have so far provided only upper bounds [14–
16], but they will surely be measured at B factories in the
near future. The currently available data as presented at
the LP’2003 conference [17] are summarized in Table 1.

When compared with the inclusive B → Xs,dγ decays,
the corresponding exclusiveB → V γ decays are experimen-
tally more tractable (specifically for the B → ργ mode) but
theoretically less clean, since the bound state effects are es-
sential and need to be described by some non-perturbative
quantities like form factors and light-cone distribution am-
plitudes (LCDAs).

In [18–20], the branching ratios and rate asymmetries
of B → V γ decays were investigated in leading order
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Table 1. Experimental measurements of the CP -averaged branching ratios and/or CP violating
asymmetries ACP (at 90%C.L.) of the exclusive B → V γ decays for V = K∗, ρ and ω

Channel CLEO [14] BaBar [15] Belle [16] Average
B(B → K∗0γ) (10−5) 4.55 ± 0.70 ± 0.34 4.23 ± 0.40 ± 0.22 4.09 ± 0.21 ± 0.19 4.17 ± 0.23
B(B → K∗+γ) (10−5) 3.76 ± 0.86 ± 0.28 3.83 ± 0.62 ± 0.22 4.40 ± 0.33 ± 0.24 4.18 ± 0.32
B(B → ρ0γ) (10−6) < 17 < 1.2 < 2.6
B(B → ρ+γ) (10−6) < 13 < 2.1 < 2.7
B(B → ωγ) (10−6) < 1.0 < 4.4
ACP (B → K∗0γ) (%) 8 ± 13 ± 3 −3.5 ± 9.4 ± 2.2 −6.1 ± 5.9 ± 1.8
ACP (B → K∗+γ) (%) +5.3 ± 8.3 ± 1.6

(LO) and next-to-leading order (NLO) by employing the
constituent quark model (CQM) [18]. In [21], the exclu-
sive B → K∗γ decay was studied by using the pertur-
bative QCD approach. Very recently, in the heavy quark
limit mb � ΛQCD, the decay amplitudes for the exclu-
sive B → (K∗, ρ)γ decay modes have been calculated in
a model-independent way by using a QCD factorization
approach [22–24], which is similar in spirit to the scheme
developed earlier for the non-leptonic two-body decays of
the B meson [25]. The NLO standard model predictions for
the branching ratios, CP and isospin asymmetries, as well
as the U -spin breaking effects for B → K∗γ and B → ργ
decays are now available [22–24, 26, 27]. The new physics
effects on isospin symmetry breaking and direct CP vio-
lation in B → ργ decay have also been studied recently in
supersymmetric models [28].

In a previous paper, we calculated the NLO new physics
contributions to the B0-B

0
mixing and the inclusive B →

Xsγ decay from the charged Higgs loop diagrams in the
third type of two-Higgs-doublet model (model III) and the
conventional model II. In this paper, we calculate the new
physics contributions to the branching ratios, CP asym-
metries, and isospin and U -spin symmetry breaking of the
exclusive radiative decays B → (K∗, ρ)γ in the frame-
work of the general two-Higgs-doublet models, including
the conventional models I and II, and model III. The QCD
factorization method for exclusive B → V γ decays as pre-
sented in [22–24] will be employed in our calculations.

This paper is organized as follows. In Sect. 2, we describe
the basic structures of the general two-Higgs-doublet mod-
els, give a brief review about the calculation of B → V γ
at NLO in QCD factorization approach in the SM and
present the needed analytical formulas for the calculation
of Wilson coefficients and physical observables. In Sect. 3
and 4, we calculate the NLO new physics contributions
to the B → K∗γ and B → ργ decay, respectively. The
conclusions are included in the final section.

2 Theoretical framework

For the standard model part, we follow the procedure of [24]
and use the formulas as presented in [24, 26]. The QCD
factorization approach to the exclusive B → V γ decays was
applied independently in [22–24] with some differences in
the definition and explicit expressions of the functions. We

adopt the analytical formulas in the SM as presented in [24,
26] in this paper, since more details can be found there.

In this section, we present the effective Hamiltonian and
the relevant formulas for the exclusive decays B → V γ
in the framework of the SM and the general two-Higgs-
doublet models.

2.1 Effective Hamiltonian for inclusive b → sγ decay

In the framework of the SM, if we only take into account
operators up to dimension 6 and put ms = 0, the effective
Hamiltonian for b → sγ transitions at the scale µ reads [24]

Heff =
GF√

2

∑
p=u,c

λs
p


C1Q

p
1 + C2Q

p
2 +

8∑
j=3

CjQj


 , (3)

where λq
p = V ∗

pqVpb for q = (d, s) is the Cabibbo–Kobayashi–
Maskawa (CKM) factor [29]. And the current–current,
QCDpenguin, electromagnetic and chromomagnetic dipole
operators in the standard basis1 are given by2

Qp
1 = (s̄p)V −A(p̄b)V −A ,

Qp
2 = (s̄αpβ)V −A(p̄βbα)V −A ,

Q3 = (s̄b)V −A

∑
(q̄q)V −A ,

Q4 = (s̄αbβ)V −A

∑
(q̄βqα)V −A ,

Q5 = (s̄b)V −A

∑
(q̄q)V +A ,

Q6 = (s̄αbβ)V −A

∑
(q̄βqα)V +A ,

Q7 =
e

8π2 mbs̄ασµν(1 + γ5)bαFµν ,

Q8 =
g

8π2 mbs̄ασµν(1 + γ5)T a
αβbβGa

µν , (4)

1 There is another basis: the CMM basis, introduced by
Chetyrkin, Mosiak, and Münz [5] where the fully anticom-
muting γ5 in dimensional regularization are employed. The
corresponding operators and Wilson coefficients in the CMM
basis are denoted as Pi and Zi in [24]. For more details see [5,26].

2 For the numbering of operators Qp
1,2, we use the same

convention as [26] throughout this paper.
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where Ta (a = 1, . . . , 8) stands for the SU(3)c generators,
α and β are color indices, e and gs are the electromagnetic
and strong coupling constants, Q1 and Q2 are current–
current operators, Q3–Q6 are the QCD penguin operators,
Q7 and Q8 are the electromagnetic and chromomagnetic
penguin operators. The effective Hamiltonian for b → dγ
is obtained from (3) and (4) by the replacement s → d.

To calculate the exclusive B → V γ decays complete
to next-to-leading order in QCD and to leading order in
ΛQCD/MB , only the NLO Wilson coefficient C7(µb) and LO
Wilson coefficients Ci(µb) with i = 1–6, 8 and µb = O(mb)
are needed. For the sake of the reader, we simply present
these Wilson coefficients at the high matching scale MW

and the low energy scale µb = mb here; one is referred
to [1, 5] for more details.

In the literature, one usually uses certain linear combi-
nations of the original Ci(µ), the so-called “effective coef-
ficients” Ceff(µ) introduced in [5,30], in calculations. The
corresponding transformations are of the form

Ceff
i (µ) = Ci(µ) (i = 1, . . . , 6) , (5)

Ceff
7 (µ) = C7(µ) +

6∑
i=1

yiCi(µ) , (6)

Ceff
8 (µ) = C8(µ) +

6∑
i=1

ziCi(µ) , (7)

with y = (0, 0, 0, 0,−1/3,−1) and z = (0, 0, 0, 0, 1, 0) in
the NDR scheme [30], and y = (0, 0,−1/3,−4/9,−20/3,
−80/9) and z = (0, 0, 1, 1/6, 20,−10/3) in the MS scheme
with fully anticommuting γ5 [5]. In order to simplify the
notationwewill also omit the label “eff” throughout this pa-
per.

Within the SM and at the matching scale µ = MW ,
the leading order Wilson coefficients are

C0
1,SM(MW ) = 1 , (8)

C0
i,SM(MW ) = 0, i = 2, . . . , 6 , (9)

C0
7,SM(MW ) = −A(xt)

2
, (10)

C0
8,SM(MW ) = −D(xt)

2
, (11)

with

A(x) =
3x3

t − 2x2
t

4(xt − 1)4
lnxt +

−8x3
t − 5x2

t + 7xt

24(xt − 1)3
, (12)

D(x) =
−3x2

t

4(xt − 1)4
lnxt +

−x3
t + 5x2

t + 2xt

8(xt − 1)3
, (13)

while the NLO results for C7(MW ) and C8(MW ) are

C1
7,SM(MW ) =

−16x4
t − 122x3

t + 80x2
t − 8xt

9(xt − 1)4
Li2

(
1 − 1

xt

)

+
6x4

t + 46x3
t − 28x2

t

3(xt − 1)5
lnxt

2

+
−102x5

t − 588x4
t − 2262x3

t + 3244x2
t − 1364xt + 208

81(xt − 1)5

× lnxt

+
1646x4

t + 12205x3
t − 10740x2

t + 2509xt − 436
486(xt − 1)4

, (14)

C1
8,SM(MW ) =

−4x4
t + 40x3

t + 41x2
t + xt

6(xt − 1)4
Li2

(
1 − 1

xt

)

+
−17x3

t − 31x2
t

2(xt − 1)5
lnxt

2

+
−210x5

t + 1086x4
t + 4893x3

t + 2857x2
t − 1994xt + 208

216(xt − 1)5

× lnxt

+
737x4

t − 14102x3
t − 28209x2

t + 610xt − 508
1296(xt − 1)4

, (15)

where xt = m2
t /m2

w, and Li2(x) is the dilogarithm function.
At the low energy scale µ = O(mb), the leading order

Wilson coefficients are

C0
j,SM(µ) =

8∑
i=1

kjiη
ai , for j = 1, . . . , 6 , (16)

C0
7,SM(µ) = η

16
23 C0

7,SM(MW ) +
8
3

(
η

14
23 − η

16
23

)
C0

8,SM(MW )

+
8∑

i=1

hiη
ai , (17)

C0
8,SM(µ) = C0

8,SM(MW )η
14
23 +

8∑
i=1

�8η
ai (18)

in the standard basis, while

Z0
j,SM(µ) =

8∑
i=1

hjiη
ai , for j = 1, . . . , 6 , (19)

Z0
7,SM(µ) = C0

7,SM(µ) , (20)

Z0
8,SM(µ) = C0

8,SM(µ) (21)

in the CMM basis.
The NLO Wilson coefficient C7(µb) at scale µb = O(mb)

can be written as

C7,SM(µ) = C0
7,SM(µ) +

αs(µ)
4π

C1
7,SM(µ) , (22)

with

C1
7,SM(µ) = η

39
23 C1

7,SM(MW ) +
8
3

(
η

37
23 − η

39
23

)
C1

8,SM(MW )

+
(

297664
14283

η
16
23 − 7164416

357075
η

14
23

+
256868
14283

η
37
23 − 6698884

357075
η

39
23

)
C0

8,SM(MW )
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Table 2. The “magic numbers” appearing in the calculations of the Wilson coefficients Ci(µ)
in the rare decay b → qγ with q = (d, s)

i 1 2 3 4 5 6 7 8
ai

14
23

16
23

6
23 − 12

23 0.4086 −0.4230 −0.8994 0.1456
k1i 0 0 1

2
1
2 0 0 0 0

k2i 0 0 1
2 − 1

2 0 0 0 0
k3i 0 0 − 1

14
1
6 0.0510 −0.1403 −0.0113 0.0054

k4i 0 0 − 1
14 − 1

6 0.0984 0.1214 0.0156 0.0026
k5i 0 0 0 0 −0.0397 0.0117 −0.0025 0.0304
k6i 0 0 0 0 0.0335 0.0239 −0.0462 −0.0112
h1i 0 0 1 −1 0 0 0 0
h2i 0 0 2

3
1
3 0 0 0 0

h3i 0 0 2
63 − 1

27 −0.0659 0.0595 −0.0218 0.0335
h4i 0 0 1

21
1
9 0.0237 −0.0173 −0.01336 −0.0136

h5i 0 0 − 1
126

1
108 0.0094 −0.01 0.001 −0.0017

h6i 0 0 − 1
84 − 1

36 0.0108 0.0163 0.0103 0.0023
ei

4661194
816831 − 8516

2217 0 0 −1.9043 − 0.1008 0.01216 0.0183
fi −17.3023 8.5027 4.5508 0.7519 2.0040 0.7476 −0.5358 0.0914
gi 14.8088 −10.809 −0.8740 0.4218 −2.9347 0.3971 0.1600 0.0225
hi 2.2996 −1.0880 − 3

7 − 1
14 −0.6494 −0.0380 −0.0185 − 0.0057

�i 0.8623 0 0 0 −0.9135 0.0873 −0.0571 0.0209

Table 3. Values of the input parameters used in the numerical calculations [31–33]. For the
value of FK∗ , we use the lattice QCD determination of FK∗ = 0.25 ± 0.06 [33] instead of the
result FK∗ = 0.38 ± 0.06 as given in [32]. The smaller value of FK∗ gives a better agreement
between the SM predictions and the data. Rb =

√
ρ̄2 + η̄2, and A, λ, ρ̄ and η̄ are the ordinary

Wolfenstein parameters of the CKM mixing matrix

A λ Rb γ GF αem

0.854 0.2196 0.39 ± 0.08 (60 ± 20)◦ 1.1664 × 10−5 GeV−2 1/137.036
αs(MZ) mW mt Λ

(5)
MS

mc(mb) mu

0.119 80.42 GeV 174.3 GeV 225 MeV 1.3 ± 0.2 GeV 4.2 MeV
fB λB mBd mb(mb) τB+ τB0

200 MeV (350 ± 150) MeV 5.279 GeV 4.2 GeV 1.671 ps 1.537 ps
FK∗ fK∗ f⊥

K∗ mK∗ αK∗
1 αK∗

2

0.25 ± 0.06 230 MeV 185 MeV 894 MeV 0.2 0.04
Fρ fρ f⊥

ρ mρ αρ
1 αρ

2

0.29 ± 0.04 200 MeV 160 MeV 770 MeV 0 0.2

+
37208
4761

(
η

39
23 − η

16
23

)
C0

7,SM(MW )

+
8∑

i=1

(eiηE(xt) + fi + giη)ηai , (23)

with

E(x) =
x(x2 + 11x − 18)

12(x − 1)3
+

x2(4x2 − 16x + 15)
6(x − 1)4

lnx

− 2
3

lnx − 2
3

, (24)

where η = αs(MW )/αs(µb), and the “magic numbers” ai,
ei, fi, gi, Kji and hji, hi and �i are summarized in Table 2.

Using the central values of the input parameters as
given in Table 3, we find the numerical results of the Wilson
coefficients Ci(mb) and Zi(mb) in the SM:

−→
C0(mb) = {1.1167,−0.2670, 0.0120,−0.0274, 0.0078,

−0.0340,−0.3212,−0.1519} , (25)
−→
Z0(mb) = {−0.5339, 1.0280,−0.0055,−0.0727, 0.0005,

0.0012,−0.3212,−0.1519} (26)

at the leading order, and

C7(mb) = −0.3212︸ ︷︷ ︸
C0

7 (mb)

+ 0.0112︸ ︷︷ ︸
∆CNLO

7

= −0.3100 (27)
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at the next-to-leading order; the second term denotes the
NLO QCD correction to C0

7 (mb).

2.2 B → V γ decay in the QCD factorization approach

Based on the effective Hamiltonian for the quark level pro-
cess b → s(d)γ, one can write down the amplitude for
B → V γ and calculate the branching ratios and CP vio-
lating asymmetries once a method is derived for computing
the hadronic matrix elements. One typical numerical result
obtained by employing the constituent quark model [18] is

B(B → K∗γ) ≈ 5 × 10−5 (28)

at both LO and NLO level [20]. Although this theoretical
prediction is in good agreement with the data numeri-
cally, the hadronic models used in [18–20] did not allow
a clear separation of short- and long-distance dynamics
and a clean distinction of model-dependent and model-
independent features. By using the QCD factorization ap-
proach [22–24], one can separate systematically pertur-
batively calculable hard-scattering kernels (T I

i and T II
i )

from non-perturbative form factors and universal light-
cone distribution amplitudes of B, K∗ and ρ mesons. The
higher order QCD corrections can therefore be taken into
account consistently.

In this paper, we calculate the new physics contribu-
tions to the exclusive decays B → K∗γ and B → ργ in
the general two-Higgs-doublet models by employing the
QCD factorization approach. We will always consider the
decay widths or branching ratios averaged over the charge
conjugated modes with the obvious exception of the CP
asymmetries.

In theQCD factorization approach, the hadronicmatrix
elements of the operators Qi with i = 1, . . . , 8 for B → V γ
decays can be written as [24]

〈V γ(ε)|Qi|B̄〉 (29)

=
[
FB→V (0) T I

i +
∫ 1

0
dξ dv T II

i (ξ, v) ΦB(ξ) ΦV (v)
]

· ε ,

where ε is the photon polarization four-vector, FB→V is the
form factor describing B → V decays, ΦB and ΦV are the
universal and non-perturbative light-cone distribution am-
plitudes forB andV meson respectively3, v (v̄ ≡ 1−v) is the
momentum fraction of a quark (anti-quark) inside a light
meson: l+1 = vk+ and l+2 = v̄k+ while kµ = (k+, k−,k⊥)
is a four-vector in light-cone coordinates, ξ describes the
momentum fraction of the light spectator quark inside a B
meson: l+ = ξp+

B with ξ = O(ΛQCD/mb), and T I
i and T II

i
denote the perturbative short-distance interactions. The
QCD factorization formula (29) holds up to corrections of
relative order ΛQCD/mb.

In the heavy quark limit, the contributions to the ex-
clusive B → V γ decay can be classified into three classes4.

3 For explicit expressions and more details on ΦB and ΦV ,
see [22,25] and references therein.

4 For more details of various contributions and the corre-
sponding Feynman loops, see for example [26] and references
therein.

(1) The “Type-I” or “hard vertex” contributions include
(a) the contribution of the magnetic penguin operator Q7
described by the form factor FB→V , which is the only
contribution to the amplitude of B → V γ at the LO ap-
proximation, and (b) the O(αs) contribution to the hard-
scattering kernels T I

i from four-quark operators Q1...6 and
the chromomagnetic penguin operator Q8.
(2) The “Type-II” or “hard spectator” contributions in-
clude the O(αs) contribution to the hard-scattering kernels
T II

i from four-quark operators Q1...6 and the chromomag-
netic penguin operator Q8.
(3) The “Weak annihilation” contribution, which is sup-
pressed by one power ΛQCD/mb when compared with the
Type-I and -II contributions, and the dominant annihila-
tion amplitudes can be computed within QCD factoriza-
tion.

Combining all parts, the decay amplitude to O(αs) for
exclusive B → V γ decay takes the form of

A(B → V γ) =
GF√

2
RV 〈V γ|Q7|B〉 , (30)

with

RV = λ(q)
u [au

7 (V γ) + au
ann(V γ)]

+ λ(q)
c [ac

7(V γ) + ac
ann(V γ)] , (31)

where q = s for V = K∗, q = d for V = ρ, and ap
7 (p = u, c)

denote the hard vertex and hard spectator NLO contribu-
tions

ap
7(V γ) = C7(µ) (32)

+
αs(µ)CF

4π


∑

i=1,2

Z0
i (µ)Gi(zp) +

∑
j=3...6,8

Z0
j (µ)Gj




+
αs(µh)CF

4π


C0

1 (µh)HV
1 (zp) +

∑
j=3...6,8

C0
j (µh)HV

j


 ,

where zq = m2
q/m2

b , µh =
√

0.5µ, CF = 4/3, the Wilson
coefficients can be found in the previous subsection, and
the explicit expressions of the functions Gi and HV

j can be
found in [26] and in Appendix A. The functions au

ann and
ac
ann in the above equation denote the weak annihilation

contributions and take the form of [26]

au
ann(K̄∗0γ) = Qd

[
a4b

K∗
+ a6

(
dK∗

v + dK∗
v̄

)]
,

ac
ann(K̄∗0γ) = au

ann(K̄∗0γ),

au
ann(K∗−γ) = Qu

[
a1b

K∗
+ a4b

K∗
+ a6

(
−2dK∗

v + dK∗
v̄

)]
,

ac
ann(K∗−γ) = Qu

[
a4b

K∗
+ a6

(
−2dK∗

v + dK∗
v̄

)]
(33)

for B → K∗γ decays, and

au
ann(ρ0γ) = Qd [−a2b

ρ + a4b
ρ + a6 (dρ

v + dρ
v̄)] ,

au
ann(ρ−γ) = Qu [a1b

ρ + a4b
ρ + a6 (−2dρ

v + dρ
v̄)] ,
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ac
ann(ρ0γ) = Qd [a4b

ρ + a6 (dρ
v + dρ

v̄)] ,

ac
ann(ρ−γ) = Qu [a4b

ρ + a6 (−2dρ
v + dρ

v̄)] (34)

for B → ργ decays, where Qu = 2/3 and Qd = −1/3 are
the electric charge of up and down quarks, and ai denote
the combinations of LO Wilson coefficients

a1,2 = C0
1,2 +

1
3
C0

2,1,

a4 = C0
4 +

1
3
C0

3 ,

a6 = C0
6 +

1
3
C0

5 . (35)

And finally the functions bV , dV
v and dV

v̄ are [26]

bV =
2π2

FV

fBmV fV

mBmbλB
, (36)

dV
(−)
v

= −4π2

FV

fBf⊥
V

mBmb

(
1 ∓ αV

1 + αV
2 + . . .

)
. (37)

The values of all parameters appearing in the above two
equations can be found in Table 3.

One special feature of the B → ργ decay is that the
weak annihilation can proceed through the current–current
operator with large Wilson coefficient C1. Although the
annihilation contribution is power-suppressed in 1/mb, this
is compensated for by the large Wilson coefficient and the
occurrence of annihilation at tree level.

From the decay amplitude in (30), it is straightforward
to write down the branching ratio for B → V γ decay:

B(B → V γ) = τB
G2

Fαm3
Bm2

b

32π4

(
1 − m2

V

m2
B

)3

|RV |2 c2
V |FV |2,

(38)
where the function RV has been given in (31), and cV = 1
for V = K∗, ρ− and cV = 1/

√
2 for V = ρ0. The branching

ratios for the CP -conjugated B → V γ decay are obtained
by the replacement of λ

(q)
p → λ

(q)∗
p in function RV .

2.3 Outline of the general 2HDM’s

The simplest extension of the SM is the so-called two-Higgs-
doublet models [12]. In such models, the tree level flavor
changing neutral currents are absent if one introduces an ad
hoc discrete symmetry to constrain the 2HDM scalar po-
tential and Yukawa Lagrangian. Let us consider a Yukawa
Lagrangian of the form [34]

LY = ηU
ijQ̄i,Lφ̃1Uj,R + ηD

ij Q̄i,Lφ1Dj,R + ξU
ijQ̄i,Lφ̃2Uj,R

+ ξD
ij Q̄i,Lφ2Dj,R + H.c. , (39)

where φi (i = 1, 2) are the two Higgs doublets, φ̃1,2 =
iτ2φ

∗
1,2, Qi,L (Uj,R) with i = (1, 2, 3) are the left-handed

isodoublet quarks (right-handed up-type quarks), Dj,R are
the right-handed isosinglet down-type quarks, while ηU,D

i,j

and ξU,D
i,j (i, j = 1, 2, 3 are family indices) are generally the

non-diagonalmatrices of theYukawa coupling.By imposing
the discrete symmetry

φ1 → −φ1, φ2 → φ2, Di → −Di, Ui → ∓Ui , (40)

one obtains the so-called model I and model II.
In model III [34,35], the third type of two-Higgs-doublet

models, no discrete symmetry is imposed and both up-
and down-type quarks may have diagonal and/or flavor
changing couplings with φ1 and φ2. As described in [34], one
can choose a suitable basis to express the two Higgs doublet
φ1 and φ2 and define the mass eigenstates (H±, H

0
, h0, A0).

After the rotation of quark fields, the Yukawa Lagrangian
of the quarks are of the form [34]

LIII
Y = ηU

ijQ̄i,Lφ̃1Uj,R + ηD
ij Q̄i,Lφ1Dj,R + ξ̂U

ijQ̄i,Lφ̃2Uj,R

+ ξ̂D
ij Q̄i,Lφ2Dj,R + H.c. , (41)

where ηU,D
ij correspond to the diagonal mass matrices of

up- and down-type quarks, while the neutral and charged
flavor changing couplings will be [34]

ξ̂U,D
neutral = ξU,D, ξ̂U

charged = ξUVCKM,

ξ̂D
charged = VCKMξD , (42)

with

ξU,D
ij =

g
√

mimj√
2MW

λij , (43)

where VCKM is the CKM mixing matrix [29], and i, j =
(1, 2, 3) are the generation indices. The coupling constants
λij are free parameters to be determined by experiment,
and they may also be complex.

The two-Higgs-doublet models have been studied ex-
tensively in the literature at LO and NLO level [8,13,34–43]
and tested experimentally [31]. For model I, the new physics
corrections to physical observables are usually very small
and less interesting phenomenologically. Model II, however,
has been very popular, since it is the building block of the
minimal supersymmetric standard model and may provide
large contributions to the mixing and decay processes of
the K and B meson systems. The most stringent constraint
on model II may come from the inclusive B → Xsγ decay.
From the experimental measurements and currently avail-
able studies at NLO level [8, 13, 37–39], one gets to know
the following main features of the conventional models I
and II, and model III.
(1) For model I, no bound on MH can be obtained from
B → Xsγ [44], since the charged Higgs loops interfere de-
structively with the SM penguin diagrams and decouple
for large tanβ.
(2) In model II, the charged Higgs penguins interfere con-
structively with their SM counterparts, and thus always
enhance the branching ratio B(B → Xsγ). The measured
mass splitting ∆MBd

= 0.502 ± 0.007 ps−1 and the de-
cay rate B(B → Xsγ) = (3.34 ± 0.38) × 10−4 leads to
strong bounds on both the tanβ = v2/v1 and the mass
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MH [13,44]. The typical bounds at NLO level as given for
example in [13] are

tanβ > 0.6 (44)

and

MH � 300 GeV (45)

for any value of tanβ, and the tanβ dependence of the lower
bound saturates for tanβ � 5. This NLO lower bound on
MH is much stronger than the direct experimental bound
MH > 78.6 GeV [31] and the bound from other observ-
ables, such as Rb and B → τ decays [8].
(3) For model III5, the charged-Higgs loop diagrams can
provide significant contributions to B0–B

0
mixing, the in-

clusive B → Xsγ decay and many other physical observ-
ables [34, 41]. In a previous paper [13], we calculated the
charged-Higgs contributions to the mass splitting ∆MBd

and the decay rate B(B → Xsγ) at the NLO level, and
found the strong constraints on free parameters λtt, λbb

and MH from the well measured ∆MBd
and B(B → Xsγ).

Two typical choices of (λtt, λbb) and the corresponding con-
straint on MH obtained from the measured branching ratio
of B → Xsγ decay are

III − A : (λtt, λbb) = (0.5, 1), MH > 150 GeV (46)

as shown in Fig. 9 of [13]; and

III − B : (λtt, λbb) = (0.5, 22), 226 ≤ MH ≤ 285 GeV.
(47)

For the first case, the new physics contribution to B → Xsγ
is very small and becomes negligible for MH > 250 GeV.
For the second case (in [13], it was denoted case C), the new
physics contribution can be rather large, the sign of the
dominant Wilson coefficient Ceff

7 (mb) changed its sign from
negative to positive due to the inclusion of the charged-
Higgs penguin contributions. In this paper, we denote these
two typical cases as model III-A and III-B, respectively.

2.4 NLO Wilson coefficients in the general 2HDM’s

The new physics contributions to the quark level b →
s/dγ transition from the charged Higgs penguins manifest
themselves from the correction to the Wilson coefficients
at the matching scale MW . In [37], the authors calculated
the NLO QCD corrections to the B → Xsγ decay in the
conventionalmodels I and II. In [13], we extended theirwork
to the case of model III. Here we firstly present the Wilson
coefficients at the energy scales MW and µ = O(mb) in
a general 2HDM and then calculate the branching ratios,
CP and isospin asymmetries, and the U -spin symmetry

5 In this paper, the term model III always means the scenario
of the general model III as presented in [41]. In such a model
III [41], only the couplings λtt and λbb remain non-zero, and
only the charged Higgs boson penguin diagram provide a new
physics contribution to b → sγ decay at one loop level. For
more details see [13,41].

breaking of the exclusive decays B → K∗γ and B → ργ
in the following sections.

Note that the CMM basis was used in [13, 37]; the
Wilson coefficients Ceff

i (µ) there are indeed the Wilson
coefficients Zi(µ) in this paper. For the exclusive decays
B → V γ and to the first order in αs, only the NLO expres-
sion for C7(µ) has to be used while the leading order values
are sufficient for the other Wilson coefficients appearing in
ap
7(V γ) in (32). Therefore, only C7(µ), C

(0)
8 (µ) and Z

(0)
8 (µ)

in (32) are affected by the charged-Higgs penguin contri-
butions, while all other Wilson coefficients for i = 1, . . . , 6
remain the same as in the SM. Since Z0

7,8(µ) = C0
7,8(µ),

and C1
7 (µ) = Z1

7 (µ) [26], so we here use the terms C0
7,8 and

C1
7 for convenience.

The new physics part of the LO Wilson coefficients C0
7,8

at the matching energy scale MW takes the form

C0
7,NP(MW ) = −1

6
|Y |2A(yt) + (XY ∗)B(yt) , (48)

C0
8,NP(MW ) = −1

6
|Y |2D(yt) + (XY ∗)E(yt) , (49)

where yt = m2
t /M

2
H , and the functions A(x) and D(x) have

been given in (10) and (11), while

B(y) =
3y − 5y2

12(1 − y)2
+

2y − 3y2

6(1 − y)3
log[y] , (50)

E(y) =
3y − y2

4(1 − y)2
+

y

2(1 − y)3
log[y] . (51)

The new physics parts of the NLO Wilson coefficients
C1

7,8 at the matching scale µW can be written as

C1
7,NP(MW ) =

|Y |2 C1
7,Y Y (MW ) + (XY ∗) C1

7,XY (MW ), (52)

C1
8,NP(MW ) =

|Y |2 C1
8,Y Y (MW ) + (XY ∗) C1

8,XY (MW ) , (53)

with

C1
i,Y Y (MW ) =

Wi,Y Y + Mi,Y Y ln [yt] + Ti,Y Y

(
ln [xt] − 4

3

)
, (54)

C1
i,XY (MW ) =

Wi,XY + Mi,XY ln[yt] + Ti,XY

(
ln[xt] − 4

3

)
. (55)

The explicit expressions of the functions Wi,j , Mi,j and
Ti,j (i = 7, 8 and j = Y Y, XY ) can be found in [37]
or in Appendix B. The Tij terms appear when expressing
mt(MW ) in terms of the pole mass mt in the corresponding
lowest order coefficients [37].

At the low energy scale µ = O(mb), the Wilson coeffi-
cients C0,1

7 (µ) and C0
8 (µ) after the inclusion of new physics

contributions can be written as

C0
7 (µ) = η

16
23
[
C0

7,SM(MW ) + C0
7,NP(MW )

]
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+
8
3

(
η

14
23 − η

16
23

) [
C0

8,SM(MW ) + C0
8,NP(MW )

]
+

8∑
i=1

hi ηai , (56)

C0
8 (µ) = η

14
23
[
C0

8,SM(MW ) + C0
8,NP(MW )

]
+

8∑
i=1

�i ηai ,

(57)

C1
7 (µb) = η

39
23
[
C1

7,SM(MW ) + C1
7,NP(MW )

]
+

8
3

(
η

37
23 − η

39
23

) [
C1

8,SM(MW ) + C1
8,NP(MW )

]
+
(

297664
14283

η
16
23 − 7164416

357075
η

14
23 +

256868
14283

η
37
23

− 6698884
357075

η
39
23

)[
C0

8,SM(MW ) + C0
8,NP(MW )

]
+

37208
4761

(
η

39
23 − η

16
23

) [
C0

7,SM(MW ) + C0
7,NP(MW )

]
+

8∑
i=1

[eiηE(xt) + fi + giη)ηai ] ηai , (58)

where the “magic numbers” are listed in Table 2.
In the conventional model I and II, the general Yukawa

couplings X and Y are real and given by

X = − cot β, Y = cot β (model I) , (59)

X = tanβ, Y = cot β (model II) . (60)

In model III where only the couplings λtt and λbb are
non-zero, the relation between the couplings (X, Y ) and
(λtt, λbb) is also simple:

X = −λbb, Y = λtt (model III) . (61)

Now we are ready to calculate the numerical results
for the B → V γ decay in the general 2HDM’s with the
inclusion of NLO QCD corrections.

3 B → K∗γ decay

For the numerical calculations, unless otherwise specified,
we use the central values of the input parameters as listed in
Table 3 and consider the uncertainties of those parameters
as given explicitly in Table 3.

From (30) and (38), the decay amplitude and branching
ratio for B → K∗γ decay can be written as

A(B → K∗γ) =
GF√

2
RK∗〈K∗γ|Q7|B〉 , (62)

B(B → K∗γ) =

τB
G2

Fαm3
Bm2

b

32π4

(
1 − m2

K∗

m2
B

)3

|RK∗ |2 |F ∗
K |2, (63)

with

RK∗ = V ∗
usVub [au

7 (K∗γ) + au
ann(K∗γ)]

+ V ∗
csVcb [ac

7(K
∗γ) + ac

ann(K∗γ)] . (64)

The CP asymmetry of B → K∗γ can also be defined
as [15,16]

ACP (K∗γ) =
Γ (B → K∗γ) − Γ (B → K

∗
γ)

Γ (B → K∗γ) + Γ (B → K
∗
γ)

. (65)

Another physical observable for B → V γ decay is the
isospin symmetry breaking in the K∗±–K

∗0
or ρ±–ρ0 sys-

tem. Since the branching ratios of both B− → K∗−γ and
B

0 → K
∗0

γ decays have been measured, the study of the
isospin breaking in B → V γ decays becomes very inter-
esting now [27,28]. Following [27], the breaking of isospin
symmetry in the K∗−–K

∗0
system can be defined as

∆0−(K∗γ) ≡ ητB(B → K
∗0

γ) − B(B → K∗−γ)

ητB(B → K
∗0

γ) + B(B → K∗−γ)
, (66)

where ητ = τB+/τB0 , and the CP -averaged branching ra-
tios are understood.

By using the world averages as given in (2) and the ratio
τB+/τB0 = 1.083 ± 0.017 [31], we find numerically that

∆0−(K∗γ)exp = (3.9 ± 4.8)% , (67)

where the errors from the two measured branching ratios
and the ratio τB+/τB0 have been added in quadrature.
The measured value of isospin symmetry breaking is in-
deed small as expected previously [15,16]. Any new physics
contribution producing large isospin breaking forB → K∗γ
decays will be strongly constrained by this measurement.

3.1 Branching ratios and CP asymmetries

By using the formulas as given in (32) and (33) and the
central values of input parameters in Table 3, we find the
SM predictions for ap

7(K
∗γ) and aann(K∗γ) at the low

energy scale µ = mb,

au
7 (K∗γ)

= −0.3212︸ ︷︷ ︸
C0

7,SM(mb)

+ 0.0113︸ ︷︷ ︸
∆C1

7,SM

−0.1407 − 0.0683i︸ ︷︷ ︸
T I−contribution

+0.0330 − 0.0002i︸ ︷︷ ︸
T II−contribution

= −0.4177 − 0.0685i , (68)

ac
7(K

∗γ)

= −0.3212︸ ︷︷ ︸
C0

7,SM(mb)

+ 0.0113︸ ︷︷ ︸
∆C1

7,SM

−0.0802 − 0.0131i︸ ︷︷ ︸
T I−contribution

−0.0161 − 0.0120i︸ ︷︷ ︸
T II−contribution
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= −0.4063 − 0.0251i , (69)

au
ann(K

∗0
γ) = ac

ann(K
∗0

γ) = −0.0092, (70)

au
ann(K∗−γ) = 0.1933, (71)

ac
ann(K∗−γ) = 0.0046. (72)

It is easy to see that
(a) the type-I contribution is about 4 times larger than the
type-II contribution, and
(b) only the weak annihilation factor au

ann(K∗−γ) con-
tributes to the decay B → K∗γ effectively, since for the
b → u transition the power suppression is compensated for
by the large Wilson coefficient C1 and the occurrence of
annihilation at tree level.

The corresponding NLO SM predictions for branching
ratio B(B → K∗γ) are

B(B → K
∗0

γ)SM

=
[
3.35+1.62

−1.30(FK∗)+0.57
−0.60(µ)+0.27

−0.10(λB) ± 0.20(mc)
]× 10−5

=
(
3.35+1.75

−1.45

)× 10−5 , (73)

B(B → K∗−γ)SM

=
[
3.25+1.67

−1.33(FK∗)+0.25
−0.47(µ)+0.35

−0.14(λB) ± 0.20(mc)
]× 10−5

=
(
3.25+1.74

−1.43

)× 10−5 , (74)

where the four major errors have been added in quadra-
ture. The uncertainty of the form factor FK∗ dominate the
theoretical error, and the remaining errors from other in-
put parameters are negligibly small. Although the central
values of the SM predictions for the decay rates are smaller
than the world average as given in (2), they are in good
agreement within 1σ theoretical error. The effect of the
annihilation contribution on the decay rates is less than
5% numerically.

If we use FK∗ = 0.38±0.06 as obtained from the light-
cone sum rule (LCSR) [32] instead of FK∗ = 0.25 ± 0.06
in our numerical calculation, we find

B(B → K
∗0

γ)SM =
(
7.27+2.58

−2.37

)× 10−5 , (75)

B(B → K∗−γ)SM =
(
7.31+2.57

−2.37

)× 10−5 . (76)

Here the central values are much larger than the measured
values as given in (2), but still agree with the data within
2σ errors because of the large theoretical error. For the
purpose of studying the new physics contributions to the
exclusive decays B → V γ, one prefers a better agreement
between the SM predictions and the high precision data.
Therefore, we will use FK∗ = 0.25 ± 0.06 in this paper,
unless otherwise specified.

For model I, the theoretical predictions for the branch-
ing ratios are

B(B → K
∗0

γ)I =
(
3.35+1.75

−1.45

)× 10−5 , (77)

B(B → K∗−γ)I =
(
3.25+1.74

−1.43

)× 10−5 , (78)

for tanβ = 4 and MH = 200 GeV. The MH dependence
of the branching ratio B(B → K∗γ) is very weak: it will
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Fig. 1. Plot of the branching ratio B(B → K∗−γ) versus
tan β in model I for MH = 200 GeV. The dots and solid line
show the central value of the SM and model I prediction,
respectively. The region between the two dashed lines shows the
SMprediction: B(B → K∗−γ) = (3.25+1.74

−1.43)×10−5. The shaded
band shows the data within 2σ errors: B(B → K∗−γ)exp =
(4.18 ± 0.64) × 10−5

change by less than 2% in the range of 200 ≤ MH ≤
600 GeV.

Figure 1 shows the tanβ dependence of the branching
ratio B(B → K∗−γ) in model I for MH = 200 GeV. The
dots and solid line show the central value of the NLO SM
and model I prediction, respectively. The region between
the two dashed lines shows the NLO SM prediction with
error as given in (74). The shaded band shows the data:
B(B → K∗−γ)exp = (4.18±0.32)×10−5. From this figure,
one can see that (a) the NLO SM prediction agree with the
data within 1σ error; and (b) the new physics contribution
inmodel I is negligibly small for tanβ ≥ 1,while tanβ < 0.5
is also strongly disfavored. For the B → K∗0γ decay mode,
we have the same conclusion.

In the popular model II, the numerical results for
ap
7(K

∗γ) at the low energy scale µ = mb are,

au
7 (K∗γ)II = −0.3100︸ ︷︷ ︸

C7,SM(mb)

− 0.06523︸ ︷︷ ︸
∆C7,NP

−0.1436 − 0.0724i︸ ︷︷ ︸
T I−contribution

+0.0481 − 0.0003i︸ ︷︷ ︸
T II−contribution

= −0.4707 − 0.0728i , (79)

ac
7(K

∗γ)II = −0.3100︸ ︷︷ ︸
C7,SM(mb)

− 0.0652︸ ︷︷ ︸
∆C7,NP

−0.0831 − 0.0172i︸ ︷︷ ︸
T I−contribution

−0.0265 − 0.0182i︸ ︷︷ ︸
T II−contribution

= −0.4848 − 0.0354i , (80)

for tanβ = 4 and MH = 300 GeV. The second terms in
above two equations are the new physics corrections to
the NLO Wilson coefficient C7,SM(mb), the hard vertex
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Fig. 2. The MH dependence of the branching ratio B(B →
K∗γ) in model II for tan β = 4. The dot-dashed and solid
curve show the central value of the NLO model II prediction
for B(B → K∗0γ) and B(B → K∗−γ), respectively. The region
between two dashed lines shows the SM prediction: B(B →
K∗−γ) = (3.25+1.74

−1.43)×10−5. The shaded band shows the same
data as in Fig. 1

and hard spectator contributions are also changed slightly
because of the variations of Z0

8 (µ) and C0
7 (µh) after in-

cluding the charged-Higgs contributions. The total new
physics contribution to ap

7 in model II is around 10% for
tanβ = 4 and MH = 300 GeV. The annihilation parts
remain unchanged.

For model II, the theoretical predictions for branching
ratios are

B(B → K
∗0

γ)II

=
[
4.54+2.22

−1.77(FK∗)+0.68
−0.72(µ)+0.33

−0.13(λB) ± 0.22(mc)
]

×10−5

=
(
4.54+2.36

−1.93

)× 10−5 , (81)

B(B → K∗−γ)II

=
[
4.47+2.29

−1.83(FK∗)+0.32
−0.57)(µ)+0.44

−0.17(λB) ± 0.23(mc)
]

×10−5

=
(
4.47+2.36

−1.94

)× 10−5 , (82)

for tanβ = 4 and MH = 300 GeV.
Figure 2 shows the MH dependence of the branching

ratio B → K∗γ in model II for tanβ = 4. The dot-dashed
and solid curve shows the central value of the NLO model
II prediction for the branching ratio B(B → K

∗0
γ) and

B(B → K∗−γ), respectively. Other bands or lines show
the same thing as in Fig. 1.

Figure 3 shows the tanβ dependence of the branching
ratio B → K∗γ in model II for MH = 300 GeV. The dot-
dashed and solid curve shows the central value of the NLO
model II prediction for the branching ratio B(B → K

∗0
γ)
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Fig. 3. The tan β dependence of the branching ratio B(B →
K∗γ) in model II for MH = 300 GeV. The curves and bands
have the same meaning as in Fig. 2
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Fig. 4. The same as Fig. 2, but for FK∗ = 0.38 ± 0.06 instead
of FK∗ = 0.25 ± 0.06

and B(B → K∗−γ), respectively. Other bands or lines show
the same thing as in Fig. 1.

It is easy to see from Fig. 2 that a charged Higgs boson
with a mass around 200 GeV is still allowed by the measured
branching ratio of the exclusive B → K∗γ decay, which is
weaker than the lower bound of MH � 300 GeV obtained
from the data of the inclusive B → Xsγ decay. This is
consistent with general expectations. The key point here is
the large uncertainty of the non-perturbative form factor
FK∗ . If we use FK∗ = 0.38 ± 0.06 and keep all other input
parameters unchanged, we get a much stronger lower limit
on MH , as can be seen from Fig.4, where the solid and dot-
dashed curves show theNLOmodel II prediction forB(B →
K

∗0
γ) and B(B → K∗−γ), respectively. The dots line and

the band between two dashed lines show the corresponding
SM prediction of B(B → K∗−γ) = (7.31+2.58

−2.37) for FK∗ =
0.38 ± 0.06.
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Fig. 5. The MH dependence of the branching ratio B(B →
K∗γ) in model III-A. The dot-dashed and solid curve show the
central value of the NLO model III-A prediction for B(B →
K

∗0
γ) and B(B → K∗−γ), respectively. The region between

the two dashed lines shows the SM prediction: B(B → K∗−γ) =
(3.25+1.74

−1.43)×10−5. The shaded band shows themeasured B(B →
K∗−γ) within 2σ errors

Now we study model III. According to previous studies
in [13], we got to know that the charged Higgs penguins can
provide a significant contribution to the dominant Wilson
coefficient C7(µ) and changed its sign from negative to
positive. Of course, the size of the new physics contributions
is strongly constrained by the measured branching ratio of
the inclusive B → Xsγ, as investigated in detail in [13].

Formodel III-A, i.e. (λtt, λbb) = (0.5, 1), thenewphysics
contributions are small, the numerical results for ap

7(K
∗γ)

at the low energy scale µ = mb are

au
7 (K∗γ)III−A = −0.3100︸ ︷︷ ︸

C7,SM(mb)

+ 0.0299︸ ︷︷ ︸
∆C7,NP

−0.1394 − 0.0664i︸ ︷︷ ︸
T I−contribution

+0.0336 − 0.0002i︸ ︷︷ ︸
T II−contribution

= −0.3859 − 0.0666i , (83)

ac
7(K

∗γ)III−A = −0.3100︸ ︷︷ ︸
C7,SM(mb)

+ 0.0299︸ ︷︷ ︸
∆C7,NP

−0.0788 − 0.0112i︸ ︷︷ ︸
T I−contribution

−0.0155 − 0.0120i︸ ︷︷ ︸
T II−contribution

= −0.3744 − 0.0231i , (84)

for MH = 300 GeV. The total new physics contribution
to ap

7 in model III-A is also around 10% in magnitude for
MH = 300 GeV, but in the opposite direction of that in
model II. The annihilation parts also remain unchanged.

Figure 5 shows the MH dependence of the branch-
ing ratio B → K∗γ in model III-A. The dot-dashed and
solid curve shows the central value of the NLO model
III prediction for the branching ratio B(B → K

∗0
γ) and

B(B → K∗−γ), respectively. Other bands or lines show
the same thing as in Fig. 1. The new physics contribution
here is small but consistent with the SM prediction within
1σ error. Numerically, we have

B(B → K
∗0

γ)III−A =
(
2.87+1.50

−1.27

)× 10−5 , (85)

B(B → K∗−γ)III−A =
(
2.75+1.48

−1.22

)× 10−5 , (86)

for MH = 300 GeV, where the four major errors as in (81)
and (82) have been added in quadrature.

For model III-B, i.e. (λtt, λbb) = (0.5, 22), the new
physics contributions are large; the numerical results for
ap
7(K

∗γ) at the low energy scale µ = mb are

au
7 (K∗γ)III−B = −0.3100︸ ︷︷ ︸

C7,SM(mb)

+ 0.8485︸ ︷︷ ︸
∆C7,NP

−0.1049 − 0.0174i︸ ︷︷ ︸
T I−contribution

+0.0752 − 0.0003i︸ ︷︷ ︸
T II−contribution

= 0.5088 − 0.0177i , (87)

ac
7(K

∗γ)III−B = −0.3100︸ ︷︷ ︸
C7,SM(mb)

+ 0.8485︸ ︷︷ ︸
∆C7,NP

−0.0443 + 0.0379i︸ ︷︷ ︸
T I−contribution

+0.0005 − 0.0182i︸ ︷︷ ︸
T II−contribution

= 0.4947 + 0.0196i , (88)

for MH = 250 GeV. The second terms in the above two
equations are the new physics corrections to the NLO Wil-
son coefficient C7,SM(mb), which is large and positive and
makes the ap

7(K
∗γ) positive also. The hard vertex and hard

spectator contributions are also changed moderately, but
have only small effects on the branching ratios.

For model III-B, the theoretical predictions for the
branching ratios are

B(B → K
∗0

γ)III−B

=
[
4.23+2.34

−1.83(FK∗)+0.57
−0.37(µ)+0.05

−0.02(λB) ± 0.21(mc)
]

×10−5

=
(
4.23+2.42

−1.88

)× 10−5 , (89)

B(B → K∗−γ)III−B

=
[
5.07+2.66

−2.11(FK∗)+0.44
−0.06)(µ)+0.02

−0.05(λB) ± 0.24(mc)
]

×10−5

=
(
5.07+2.71

−2.13

)× 10−5 , (90)

for MH = 250 GeV.
Figure 6 shows the MH dependence of the branch-

ing ratio B → K∗γ in model III-B. The dot-dashed and
solid curves show the central value of the NLO model III-
B prediction for the branching ratio B(B → K

∗0
γ) and

B(B → K∗−γ), respectively. Other bands or lines show
the same thing as in Fig. 5.
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Fig. 6. The same as Fig. 5, but for model III-B, i.e. (λtt, λbb) =
(0.5, 22)

If we add the theoretical errors as given in (89) and (90)
with the corresponding experimental errors in (2) in quadra-
ture and treat them as the total 1σ error, we then read off
the allowed regions of MH from Fig. 6:

218 ≤ MH ≤ 293 GeV, and MH ≥ 1670 GeV , (91)

allowed by the measured B(B → K
∗0

γ), and

226 ≤ MH ≤ 315 GeV, and MH ≥ 1490 GeV , (92)

allowed by the measured B(B → K∗−γ). These constraints
on MH are well consistent with those obtained from the
inclusive B → Xsγ decays as given in [13]. Of course, the
large theoretical error is dominated by the uncertainty of
the form factor FK∗ here.

For the exclusive B → K∗γ decay, the theoretical pre-
diction for the CP symmetry ACP as defined in (65) is
very small:

|ACP (B → K∗γ)| < 1% (93)

in the SM and all three types of the 2HDM’s considered
here, which is consistentwith themeasurements as reported
by BaBar [15] and Belle Collaboration [16]:

ACP (B → K∗γ) = [−0.17, +0.082] , (94)

ACP (B → K∗γ) = −0.001 ± 0.044 ± 0.008 . (95)

3.2 Isospin symmetry

As can be seen in the last subsection, the large uncertainty
of the form factor FK∗ dominates the total error of the the-
oretical prediction of the branching ratios. For the isospin
symmetry breaking of the B → K∗γ system, however, its
dependence on the form factor FK∗ largely cancelled in the
ratio. From (38) and (31), the isospin symmetry breaking
∆0−(K∗γ) as defined in (66) can also be written as

∆0−(K∗γ) =
ητ |R

K
∗0 |2 − |RK∗− |2

ητ |R
K

∗0 |2 + |RK∗0 |2 , (96)
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Fig. 7. The µ dependence of the isospin symmetry breaking
∆0−(K∗γ) in the SM and the general 2HDM’s. The error bar
shows the data. For details see the text

where RK∗ have been given in (64). In our approximation,
the isospin breaking is generated by weak annihilation con-
tributions, and has a residue sensitivity to the form factors
FV induced through the FV dependence of bV and dV

functions as defined in (36) and (37). Since λs
u = V ∗

usVub

is about two orders smaller than λs
c = V ∗

csVcb, the function
RK∗ is largely determined by ac

7(K
∗γ).

In the SM, we have numerically

∆0−(K∗γ)SM

=
[
5.6+1.7

−1.1(FK∗)+4.0
−2.1(µ)+0.6

−1.4(λB) ± 0.1(mc)
]× 10−2

=
(
5.6+4.4

−2.8

)× 10−2 , (97)

where the errors are added in quadrature. The dominant
error comes from the uncertainty of the low energy scale
1/2mb ≤ µ ≤ 2mb. The SM prediction agrees well with
the measured value of ∆exp

0− (K∗γ) = (3.9 ± 4.8)%.
In general two-Higgs-doublet models, by assuming

tanβ = 4 and MH = 250 GeV, we find numerically

∆0−(K∗γ)I =
(
+5.7+4.3

−2.7

)× 10−2 , (98)

∆0−(K∗γ)II =
(
+4.6+3.7

−2.4

)× 10−2 , (99)

∆0−(K∗γ)III−A =
(
+6.2+4.7

−3.0

)× 10−2 , (100)

∆0−(K∗γ)III−B =
(−5.1+2.6

−4.3

)× 10−2 , (101)

where the errors induced by the uncertainties of µ, FK∗ , λB

and mc have been added in quadrature, and the uncertainty
of µ dominates the total theoretical error.

Figure 7 shows the µ dependence of the isospin symme-
try breaking ∆0−(K∗γ) in the general 2HDM’s for tanβ =
4 and MH = 250 GeV. The two coinciding dot-dashed
curves show the SM and model I prediction, the dash and
dots curve show the model II and model III-A prediction
respectively, and the solid curve refers to the model III-B
prediction. The error bar shows the data ∆0−(K∗γ)exp =
(3.9 ± 4.8)%.
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Fig. 8. The MH dependence of the isospin symmetry breaking
∆0−(K∗γ) in the SM and the general 2HDM’s. The error bar
shows the data. For details see the text

Figure 8 shows the MH dependence of the isospin sym-
metry breaking ∆0−(K∗γ) in the general 2HDM’s for
tanβ = 4 and µ = mb GeV. The two coinciding dot-dashed
curves show the SM and model I predictions. The dashed
and dots solid curves show the model II, III-A and III-B
predictions, respectively. The error bar shows the data as
in Fig. 7.

From the above two figures, one can see that only the
theoretical prediction of the model III-B is rather differ-
ent from that of the SM and looks like deviating from
the data. But the regions MH < 200 GeV and 300 �
MH � 1500 GeV have been excluded by the data of in-
clusive B → Xsγ [13] and by the constraint as illus-
trated in Fig. 6. The main reason for the great changes
of the solid curve in Fig. 8 is the strong cancellation be-
tween the negative C7,SM(mb) and its positive new physics
counterpart as illustrated clearly in Fig. 9, where the solid
curve shows the summation of the SM and new physics
contributions to the dominant Wilson coefficient C7, i.e.,
C7(mb) = C7,SM(mb) + ∆C7,NP(mb). When C7(mb) ap-
proaches zero, the summation of other “originally small”
parts (such as the T I

i , T II
i and ap

ann contributions) be-
comes important and leads to an abnormally large isospin
breaking. The short-dashed and dot-dashed curves in Fig. 9
shows the absolute value of R

K
∗0 and RK∗− , respectively.

The isospin breaking is proportional to the difference of
their squares. At the close region of the crossing point of
R

K
∗0 and RK∗− , the ratio ∆0−(K∗γ) can be large and

changes sign. But as mentioned previously, this region
around MH = 500 GeV has been excluded by the data
of the branching ratios from both the inclusive and exclu-
sive radiative B meson decays.

In the region of MH ∼ 250 GeV, model III-B is disfa-
vored by the measured value of isospin breaking ∆0−(K∗γ)
as can be seen from Figs. 7 and 8. But taking the sizable
experimental and theoretical uncertainties into account,
the theoretical prediction of model III-B is still compatible
with the data within 2σ errors. In other words, the posi-
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Fig. 9. Plots of the MH dependence of C7,SM(mb) (horizon-
tal dots line), ∆C7,NP (dashed curve), C7(mb) (solid curve),
102|R(K

∗0
γ)| (short-dashed curve) and 102|R(K∗−γ)| (dot-

dashed curve)

tive C7(mb) is disfavored but cannot be excluded by the
present data.

4 B → ργ

When compared with B → K∗γ decay, the B → ργ de-
cay mode is particularly interesting in the search for new
physics beyond the SM, because of the suppression of b → d
transitions in the SM and the simultaneous chirality sup-
pression. For B → ργ decay, we generally know that
(a) both au

7 and ac
7 contribute effectively since λd

u and λd
c

are comparable in magnitude;
(b) the branching ratios of B → ργ are suppressed with
respect to B → K∗γ by roughly a factor of |Vtd/Vts|2 ≈
4 × 10−2;
(c) the CP asymmetry ACP (B → ργ) is generally at 10%
level, and may be observed in B factory experiments;
(d) the new physics may provide a significant contribution
to the observables of B → ργ decay;
(e) only the experimental upper limits on the branching
ratios of B → ργ are available now.

4.1 Branching ratios and CP asymmetries

From (38), the branching ratios of B → ργ decays can be
written as

B(B → ργ) = τB
G2

Fαm3
Bm2

b

32π4

(
1 − m2

ρ

m2
B

)3

|Rρ|2 c2
ρ|Fρ|2,

(102)
with

Rρ = V ∗
udVub [au

7 (ργ) + au
ann(ργ)]
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+ V ∗
cdVcb [ac

7(ργ) + ac
ann(ργ)] . (103)

By using the formulas as given in (32) and (34) and
the central values of the input parameters in Table 3, we
find the SM predictions for ap

7(ργ) and aann(ργ) at the low
energy scale µ = mb,

au
7 (ργ) = −0.3212︸ ︷︷ ︸

C0
7,SM(mb)

+ 0.0113︸ ︷︷ ︸
∆C1

7,SM

−0.1407 − 0.0683i︸ ︷︷ ︸
T I−contribution

+0.0343 − 0.0003i︸ ︷︷ ︸
T II−contribution

= −0.4164 − 0.0686i , (104)

ac
7(ργ) = −0.3212︸ ︷︷ ︸

C0
7,SM(mb)

+ 0.0113︸ ︷︷ ︸
∆C1

7,SM

−0.0802 − 0.0131i︸ ︷︷ ︸
T I−contribution

−0.0166 − 0.0143i︸ ︷︷ ︸
T II−contribution

= −0.4067 − 0.0274i , (105)

au
ann(ρ0γ) = −0.0032, ac

ann(ρ0γ) = −0.0127,

au
ann(ρ−γ) = 0.1883, ac

ann(ρ−γ) = 0.0032 . (106)

Here the values of the weak annihilation factors are slightly
different from those for B → K∗γ decay, and only the T II

contributions to ap
7(ργ) are different from those to ap

7(K
∗γ)

because of the small differences of the Hi functions between
two decay modes as can be seen in Appendix A.

The corresponding NLO SM predictions for the branch-
ing ratio B(B → ργ) are

B(B → ρ0γ)SM

=
[
0.91 ± 0.29(γ)+0.25

−0.22(Fρ) ± 0.17(µ)+0.10
−0.03(λB)

±0.10(mc)] × 10−6

=
(
0.91+0.42

−0.40

)× 10−6 , (107)

B(B → ρ−γ)SM

=
[
2.03 ± 0.34(γ)+0.54

−0.47(Fρ) ± 0.31(µ)+0.46
−0.13(λB)

± 0.12(mc)] × 10−6

=
(
2.03+0.85

−0.67

)× 10−6 , (108)

where the individual errors have been added in quadra-
ture. The uncertainties of the CKM angle γ (here we take
γ = (60 ± 20)◦ in the calculation) and the form factor Fρ

dominate the total error, and the remaining errors from
the other input parameters are negligibly small.

The central values and theoretical uncertainties of the
branching ratios B(B → ργ) in the SM and the general
2HDM’s are all listed in Table 4. The SM prediction is
well consistent with the experimental upper limits within
1σ error. The predictions of model I, II and III-A are also
compatible with the data within errors, as illustrated in
Figs. 10 and 11 forB → ρ0γ andB → ρ−γ, respectively. For
model III-B, however, the branching ratios can be changed
significantly when the charged Higgs boson is light or heavy,
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Fig. 10. Plots of the MH dependence of the branching ratio
B → ρ0γ in the SM (shaded band), model I and II (dashed
and dot-dashed curves), and model III-A (short-dashed curve)
and III-B (solid curve). The horizontal dots line shows the
experimental upper bound (at 9% C.L. [15]): B(B → ρ0γ) <
1.2 × 10−6
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Fig. 11. The same as Fig. 10, but for the decay B → ρ−γ

as illustrated by the solid curves in Figs. 10 and 11. From
the experimental upper bounds on B(B → ργ) as given in
Table 1, we find the lower limit on MH :

MH ≥ 206 GeV (109)

when the 2σ theoretical errors are also taken into account.
This lower bound is compatible with those obtained from
the measured B(B → K∗γ) as given in (91) and (92) and
from the inclusive B → Xsγ decay [13].

The CP asymmetry of B → ργ decays is defined in
the same way as for B → K∗γ decays in (65). Using the
input parameters as listed in Table 3, one finds the NLO
SM predictions:
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Table 4. The NLO theoretical predictions for branching ratios and CP asymmetries in the
SM and models I, II, III-A and III-B, assuming tan β = 4 and MH = 250 GeV. The errors
induced by the uncertainties of six input parameters (µ, Rb, λB , mc, Fρ and γ) are taken into
account. Individual errors are added in quadrature

Decays SM Model I Model II Model III-A Model III-B

B(B
0 → ρ0γ) (10−6) 0.91+0.42

−0.40 0.90+0.41
−0.39 1.30+0.59

−0.51 0.76+0.35
−0.33 1.07+0.50

−0.41

B(B− → ρ−γ) (10−6) 2.0+0.8
−0.7 2.0+0.8

−0.7 2.9+1.2
−0.9 1.7+0.7

−0.6 2.4+1.4
−1.1

ACP (B
0 → ρ0γ) (%) 8.4+4.4

−3.2 8.5+4.4
−3.5 7.0+3.8

−3.0 9.3+4.8
−3.9 −7.2+3.6

−4.6

ACP (B− → ρ−γ) (%) 10.4+6.0
−3.8 10.5+6.0

−3.9 8.7+5.1
−2.7 11.4+6.5

−3.9 −8.5+4.2
−5.0
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Fig. 12. Plots of the angle γ dependence of the CP asymmetries
for B → ρ0γ (dashed curve) and B± → ρ±γ (solid curve) decays
in the SM

ACP (ρ0γ)SM

=
[
8.4+3.8

−1.8(µ) ± 1.9(Rb) ± 0.8(λB)+0.9
−1.1(mc)

±0.4(Fρ)+0.1
−1.2(γ)

]× 10−2

=
(
8.4+4.4

−3.2

)× 10−2 , (110)

ACP (ρ±γ)SM

=
[
10.4+5.4

−2.5(µ) ± 2.4(Rb)+0.3
−0.0(λB) ± 0.8(mc)

± 0.1(Fρ)−0.3
−1.4(γ)

]× 10−2

=
(
10.4+6.0

−3.8

)× 10−2 , (111)

where the errors have been added in quadrature. The CP
asymmetry of B → ργ is large in size and depends sensi-
tively on the variations of the scale µ and Rb =

√
ρ̄2 + η̄2.

If we consider the whole range of 0◦ ≤ γ ≤ 180◦ instead of
γ = (60±20)◦ preferred by the global fit result [31], the CP
asymmetry ACP (B → ργ) also shows a strong dependence
on the angle γ as illustrated by Fig. 12 for B± → ρ±γ (solid
curve) and B → ρ0γ (dashed curve) decays.

The numerical values of CP asymmetries in the SM
and the general 2HDM’s are also listed in Table 4. The
theoretical predictions of the SM and models I, II and III-
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Fig. 13. Plots of the angle γ dependence of the CP asymmetry
for B± → ρ±γ decay in the SM and model III-B for µ = mb/2
(dots curves), mb (solid curves ) and 2mb (dashed curves)

A are all compatible, around +10%. The CP asymmetry
ACP (B → ργ) in model III-B, however, is comparable in
size with the SM prediction, but has an opposite sign, as
shown in Fig. 13, where the upper and lower three curves
show the theoretical predictions for µ = mb/2 (dashed
curves), mb (solid curves) and 2mb (dots curves) in the
SM and model III-B, respectively. For the B → ρ0γ de-
cay mode, we have a similar conclusion. This feature may
serve as a good observable to distinguish model III-B (or
a positive C7(mb)) with the SM (a negative C7(mb)).

4.2 Isospin and U -spin symmetries

According to currently available data, the SU(2) isospin
symmetry of the strong interaction is a very good symmetry
with a breaking of no more than 5%. The U -spin symmetry,
the SU(3) flavor symmetry of the strong interaction under
exchanges of the down and strange quarks, however, may
have a breaking of around 20% (i.e., ∼ (FK/Fπ − 1)) as
frequently used in the study of B → Kπ decays. For the
exclusive B → K∗γ decays, the isospin breaking derived
from the measured branching ratios is indeed around 5%
as given in (67). For B → ργ decays, no measurements are
available now.
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Fig. 14. The isospin breaking ∆(ργ) versus the CKM angle γ in
the SM and general 2HDM’s for tan β = 4 and MH = 250 GeV

As in [24,26], we also define the isospin symmetry break-
ing of B → ργ decays in the form of

∆(ργ) =
1
2

[
Γ (B+ → ρ+γ)
2Γ (B0 → ρ0γ)

+
Γ (B+ → ρ+γ)
2Γ (B0 → ρ0γ)

− 2
]

.

(112)

Using the central values of input parameters as listed
in Table 3 and assuming tanβ = 4, MH = 250 GeV, we
find numerically that

∆(ργ) =




(
0.9+23.3

−13.5

)× 10−2 in SM ,(
0.9+23.3

−13.6

)× 10−2 in model I ,(
0.4+18.3

−11.1

)× 10−2 in model II ,(
1.3+25.9

−14.9

)× 10−2 in model III-A ,(
4.9+12.0

−14.6

)× 10−2 in model III-B ,

(113)

where the errors from the uncertainties of the input parame-
ters have been added in quadrature. The largest theoretical
uncertainty comes from the CKM angle γ.

In Fig. 14, we show the angle γ dependence of the isospin
breaking ∆(ργ) in the SM and the considered 2HDM’s for
tanβ = 4, MH = 250 GeV and 0◦ ≤ γ ≤ 180◦. It is easy
to see from Fig. 14 that
(a) except for model III-B, the isospin breaking in the SM
and other 2HDM’s have a similar γ dependence;
(b) all theoretical predictions become almost identical and
very small in magnitude for γ ∼ 55◦(the value preferred by
the global fit results), and the smallness of ∆(ργ) is also
consistent with the general expectation and other measure-
ments;
(c) the theoretical predictions in the SM and model III-B
have a very different γ dependence, and have the opposite
sign for small or large values of the CKM angle γ.

The U -spin symmetry is another interesting observable
for B → (K∗, ρ)γ decays, and has been studied for example
in [24,26,45]. In the limit of U -spin symmetry, the quantity

∆U(K∗, ρ) ≡ ∆B(B → K∗γ) + ∆B(B → ργ) ≡ 0,

(114)

with

∆B(B → K∗γ) = B(B+ → K∗+γ) − B(B− → K∗−γ),

(115)

∆B(B → ργ) = B(B+ → ρ+γ) − B(B− → ρ−γ)

(116)

should be satisfied. Using the central values of the input
parameters, we find the SM prediction of ∆U(K∗, ρ)

∆B(B → K∗γ) = −3.7 × 10−7 , (117)

∆B(B → ργ) = +4.4 × 10−7 , (118)

where we have chosen γ = 90◦ which maximizes the effects.
The two parts have opposite signs and cancel to a large
extent, leaving a small U -spin breaking:

∆U(K∗, ρ) = 0.7 × 10−7 (119)

in the SM, which is only about 8% of B(B → ρ0γ). In the
general 2HDM’s, we find the numerical results

∆U(K∗, ρ) =




0.7 × 10−7 in model I ,

0.9 × 10−7 in model II ,

0.6 × 10−7 in model III-A ,

−1.5 × 10−7 in model III-B ,

(120)

for tanβ = 4, MH = 250 GeV and γ = 90◦. The new
physics contributions in the conventional model I, II and
model III-A have little effect on the size of U -spin symmetry
breaking. In model III-B, although ∆U(K∗, ρ) becomes
negative, it is still small in magnitude.

5 Conclusions

By employing the QCD factorization approach for the ex-
clusive B → V γ decays as proposed in [22–24], we calcu-
lated the NLO new physics contributions to the branching
ratios, CP asymmetries, isospin symmetry breaking and
U -spin symmetry breaking of the exclusive radiative de-
cays B → K∗γ and B → ργ, induced by the charged
Higgs penguin diagrams appearing in general two-Higgs-
doublet models including the conventional model I and II,
as well as the two typical cases of model III. The NLO new
physics contributions are included through their corrections
to the NLO Wilson coefficients C7(MW ) and C8(MW ) at
the matching scale MW .

In Sect. 2, we gave a brief review of the effective Hamil-
tonian and the calculation of the exclusive B → V γ (V =
K∗, ρ) decays at next-to-leading order in QCD factoriza-
tion, and we presented the relevant formulas for the cal-
culation of Wilson coefficients and physical observables in
the SM and the general two-Higgs-doublet models.
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In Sects. 3 and 4, we calculated the NLO new physics
contributions to the branching ratios and other observables
of B → K∗γ and B → ργ decays in the general 2HDM’s,
compared the theoretical predictions with those currently
available in experimental measurements, and found the
following points.
(1) The new physics corrections to the physical observables
under consideration in this paper are generally small in
model I and model III-A, moderate in model II, but large
in model III-B. And therefore the theoretical predictions
in the SM, model I and III-A are always in good agreement
with the corresponding data.
(2) For model II, a lower bound on the mass MH can
be obtained from the measured branching ratios of B →
K∗γ decays:

MH � 200 or 300 GeV, (121)

if one uses FK∗ = 0.25 ± 0.06 or FK∗ = 0.38 ± 0.06 in the
calculation, as illustrated by Figs. 2 and 4. From Fig. 3,
a lower limit of tanβ > 0.5 can also be obtained from
the data.
(3) In model III-B, the new physics contributions to
C7,8(MW ) are larger than their SM counterparts in size
and they change the sign of the dominant Wilson coeffi-
cient C7(mb) from negative to positive, as given in (87)
and (88).
(4) In model III-B, the ranges of

226 ≤ MH ≤ 293 GeV and MH ≥ 1670 GeV (122)

are still allowed by the measured B(B → K∗γ) as given
in (2). From the experimental upper bounds on B(B → ργ),
we find the lower limit on MH

MH ≥ 206 GeV, (123)

when the 2σ theoretical errors are also taken into account.
The above limits on MH are comparable with those ob-
tained from the inclusive B → Xsγ decay [13].
(5) The model III-B prediction for the isospin symmetry
breaking of B → K∗γ decay is ∆0−(K∗γ) = (−5.6+4.4

−2.8)%,
which is small in size but has a sign opposite to the mea-
sured value, as illustrated in Figs. 7 and 8. A positive
C7(mb) is therefore disfavored by the measured value of
∆exp

0− (K∗γ) = (3.9 ± 4.8)%, but it still cannot be excluded
if we take the large theoretical and experimental errors
into account.
(6) The theoretical predictions for the CP asymmetry
ACP (B → K∗γ) is always less than one percent in mag-
nitude in the SM and all three types of general 2HDM’s
considered here. For B → ργ decay, however, its CP asym-
metry can be as large as about 10% in size in the SM and
all three types of 2HDM’s and have a strong dependence
on the variations of the scale µ = O(mb) and the CKM
angle γ, as shown in Figs. 12 and 13. It is interesting to see
from Fig. 13 that the CP asymmetry in model III-B has
an opposite sign to the one in the SM. This feature may
be used as a good observable to distinguish model III-B
(or a positive C7(mb)) with the SM (a negative C7(mb)).
(7) For B → ργ decay, the isospin symmetry breaking is

less than 10% in the region of γ = [40 ∼ 70]◦ as preferred
by the global fit result [31], but can be as large as 20 to
40% in the regions of γ ≤ 10◦ and γ ≥ 120◦, as can be seen
clearly in Fig. 14. The SM and model III-B predictions for
isospin breaking have an opposite sign for small or large
values of the CKM angle γ.
(8) The U -spin symmetry breaking ∆U(K∗, ρ) in the SM
and all 2HDM’s considered here is generally small in
size: ∼ 10−7.
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A Gi and HV
i functions

In this appendix, the explicit expressions or numerical val-
ues of all Gi and HV

i functions appearing in (30) will be
listed. For more details of these functions, see [26] and
references therein. We have

G1(z) =
52
81

ln
µ

mb
+

833
972

− 1
4
[a(z) + b(z)] +

10iπ
81

,

(A.1)

G2(z) = −104
27

ln
µ

mb
− 833

162
+

3
2
[a(z) + b(z)] − 20iπ

27
,

(A.2)

G3 =
44
27

ln
µ

mb
+

598
81

+
2π√

3
+

8
3
Xb

− 3
4
a(1) +

3
2
b(1) +

14iπ
27

, (A.3)

G4(zc) =
38
81

ln
µ

mb
+ −761

972
− π

3
√

3
− 4

9
Xb

+
1
8
a(1) +

5
4
b(zc) − 37iπ

81
, (A.4)

G5 =
1568
27

ln
µ

mb
+

14170
81

+
8π√

3
+

32
3

Xb − 12a(1)

+ 24b(1) +
224iπ
27

, (A.5)

G6(zc) = −1156
81

ln
µ

mb
+

2855
486

− 4π
3
√

3
− 16

9
Xb − 5

2
a(1)

+ 11b(1) + 9a(zc) + 15b(zc) − 574iπ
81

, (A.6)

G8 =
8
3

ln
µ

mb
+

11
3

− 2π2

9
+

2iπ
3

, (A.7)

where

Xb =
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dv



366 Z. Xiao, C. Zhuang: Exclusive B → (K∗, ρ)γ decays in general two-Higgs-doublet models

×xy ln[v + x(1 − x)(1 − v)(1 − v + vy)]

≈ −0.1684, (A.8)

a(1) � 4.0859 +
4iπ
9

, (A.9)

b(1) =
320
81

− 4π
3
√

3
+

632π2

1215
− 8

45

[
d2 lnΓ (x)

dx2

]
x= 1

6

+
4iπ
81

� 0.0316 +
4iπ
81

, (A.10)

a(zu) = (−1.93 + 4.96i) × 10−5, (A.11)

a(zc) = 1.525 + 1.242i, (A.12)

b(zu) = (1.11 + 0.28i) × 10−5, (A.13)

b(zc) = −0.0195 + 0.1318i, (A.14)

where zq = m2
q/m2

b and the masses mq (q = u, c, b) as listed
in Table 3 have been used to obtain the numerical results.
The explicit analytical expressions for a(z) and b(z) can
be found for example in [26].

For the HV
i functions, we have

HV
1 (zp) = −2π2

9
fBf⊥

V λB

FV mB

∫ 1

0
dv h(v̄, zp)Φ⊥

V (v), (A.15)

HV
2 = 0, (A.16)

HV
3 = −1

2
[
HV

1 (1) + HV
1 (0)

]
, (A.17)

HV
4 (zc) = HV

1 (zc) − 1
2
HV

1 (1), (A.18)

HV
5 = 2HV

1 (1), (A.19)

HV
6 (zc) = −HV

1 (zc) +
1
2
HV

1 (1) = −HV
4 (zc), (A.20)

HV
8 = −4π2

3
fBf⊥

V λB

FV mB

(
1 − αV

1 + αV
2 + . . .

)
, (A.21)

where the hard-scattering function h(u, z) is given by

h(u, z)

=
4z

u2


Li2


 2

1 −
√

u−4z+iε
u


+ Li2


 2

1 +
√

u−4z+iε
u






− 2
u

, (A.22)

where Li2[x] is the dilogarithmic function, and the function
h(u, z) is real for u ≤ 4z and develops an imaginary part
for u > 4z. The light-cone wave function Φ⊥

V (v) takes the
form of

Φ⊥
V (v) = 6v(1 − v)

×
[
1 + αV

1 (µ)C3/2
1 (2v − 1) + αV

2 (µ)C3/2
2 (2v − 1)

+ . . .
]
, (A.23)

where C
3/2
1 (x) = 3x, C

3/2
2 (x) = 3

2 (5x2 − 1).

B NLO coefficients at µ = MW

in general 2HDM’s

For completeness, we list here the expressions of the NLO
functions Wi,j , Mi,j and Ti,j (i = 7, 8 and j = Y Y, XY ) at
the matching scale µW = MW in the general two-Higgs-
doublet models. For more details see [37].

The NLO functions proportional to the term |Y |2 are

W7,Y Y (y)

=
2y

9

[
8y3 − 37y2 + 18y

(y − 1)4
Li2

(
1− 1

y

)

+
3y3 + 23y2 − 14y

(y − 1)5
ln2 y

+
21y4 − 192y3 − 174y2 + 251y − 50

9(y − 1)5
ln y (B.1)

+
−1202y3 + 7569y2 − 5436y + 797

108(y − 1)4

]
− 4

9
EH ,

W8,Y Y (y)

=
y

6

[
13y3 − 17y2 + 30y

(y − 1)4
Li2

(
1− 1

y

)

− 17y2 + 31y

(y − 1)5
ln2 y

+
42y4 + 318y3 + 1353y2 + 817y − 226

36(y − 1)5
ln y (B.2)

+
−4451y3 + 7650y2 − 18153y + 1130

216(y − 1)4

]
− 1

6
EH ,

M7,Y Y (y) =
y

27
(B.3)

[
−14y4 + 149y3 − 153y2 − 13y + 31 − (18y3 + 138y2 − 84y) ln y

(y − 1)5

]
,

M8,Y Y (y) =
y

36
(B.4)

[−7y4 + 25y3 − 279y2 + 223y + 38 + (102y2 + 186y) ln y

(y − 1)5

]
,

T7,Y Y (y) =
y

9
(B.5)

[
47y3 − 63y2 + 9y + 7 − (18y3 + 30y2 − 24y) ln y

(y − 1)5

]
,

T8,Y Y (y) =
2y

3
(B.6)

[−y3 − 9y2 + 9y + 1 + (6y2 + 6y) ln y

(y − 1)5

]
,

with

EH(y) =
y

36
(B.7)
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×
[
7y3 − 36y2 + 45y − 16 + (18y − 12) ln y

(y − 1)4

]
.

The NLO functions proportional to the term (XY ∗)
are

W7,XY (y)

=
4y

3

[
8y2 − 28y + 12

3(y − 1)3
Li2

(
1− 1

y

)

+
3y2 + 14y − 8

3(y − 1)4
ln2 y +

4y3 − 24y2 + 2y + 6
3(y − 1)4

ln y

+
−2y2 + 13y − 7

(y − 1)3

]
, (B.8)

W8,XY (y)

=
y

3

[
17y2 − 25y + 36

2(y − 1)3
Li2

(
1− 1

y

)
− 17y + 19

(y − 1)4
ln2 y

+
14y3 − 12y2 + 187y + 3

4(y − 1)4
ln y

−3(29y2 − 44y + 143)
8(y − 1)3

]
, (B.9)

M7,XY (y) =
2y

9
(B.10)[−8y3 + 55y2 − 68y + 21 − (6y2 + 28y − 16) ln y

(y − 1)4

]
,

M8,XY (y) (B.11)

=
y

6

[−7y3 + 23y2 − 97y + 81 + (34y + 38) ln y

(y − 1)4

]
,

T7,XY (y) =
2y

3

[
13y2 − 20y + 7 − (6y2 + 4y − 4) ln y

(y − 1)4

]
,

(B.12)

T8,XY = 2y

[−y2 − 4y + 5 + (4y + 2) ln y

(y − 1)4

]
, (B.13)

where y = m2
t /M

2
H .
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